
Data Visualization via the Integration of Java Technologies

Vincent H. Pell, David G. Fout and Kenneth B. Sall
Century Computing Division of AppNet, Inc.

8101 Sandy Spring Rd.
Laurel, MD 20707, USA

 

Matt Brandt
NASA/Goddard Space Flight Center

Mailstop 588.0
Greenbelt, MD 20771, USA

 

vpell@CenturyComputing.com, dfout@CenturyComputing.com, ksall@CenturyComputing.com,
Matthew.Brandt@gsfc.nasa.gov 

 

Abstract

NASA/GSFC and AppNet, Inc. have developed a web-based information visualization
toolkit that allows developers to quickly and easily add advanced visualization capabilities
to new, as well as to existing applications. The goal of the Visual Analysis Graphical
Environment (VisAGE) is to provide a set of data-centric components that work together in
a robust framework that supports the addition of sophisticated visualization capabilities to
web-based and client-server applications. VisAGE provides both server-side and client-side
APIs. The server is often used with time-based, streaming data sources. The client-side
interfaces can be used without a VisAGE server, such as for generic visualization
components. 

This paper discusses a variety of Java and web technologies that made VisAGE possible.
Pitfalls and insights are highlighted. 

 

Keywords: Java2D, Java3D, RMI, XML, Data Visualization

1 of 8 2/4/00 2:02 PM

Data Visualization via the Integration of Java Technologies file:///C|/WINDOWS/DESKTOP/WWW8-DataVisualizationUsingJava.html



Data Visualization via the Integration of Java
Technologies

Background: VET and VisAGE

The NASA/GSFC project called the Virtual Environment Testbed (VET), promotes the exploration of
virtual environment technologies within the spacecraft mission operations domain. The goals of this
effort are to investigate virtual environments as they apply to the mission operations domain and to
transfer these technologies into operations. 

In order to reduce the growing trend of increasing software development costs and schedules,
NASA/Goddard Space Flight Center and the Century Computing Division of AppNet, Inc. have
developed a web-based information visualization toolkit called Visual Analysis Graphical
Environment (VisAGE) that allows developers to quickly and easily add advanced visualization
capabilities to new, as well as to existing applications. Current visualizations include: 2D and 3D bar
charts, 2D and 3D strip charts, 2D pie charts, 2D histograms, 3D carousel, text and satellite
visualizations [large screenshot]. The goal of VisAGE is to provide a set of data-centric components that
work together in a robust framework that supports the addition of sophisticated visualization capabilities
to web-based and client-server applications. 

VisAGE provides a front end for time-based, streaming data sources (e.g., telemetry, stock information,
etc.). The toolkit is used to provide different views of the data. VisAGE employs a three tiered
architecture. The middle tier, the VisAGE server, is essentially a framework that can be adapted to a
specific data source. With this design, inter-process communication between VisAGE clients and servers
is an important consideration. VisAGE provides both server-side and client-side APIs. A VisAGE server
is a Java application that provides remote data services for VisAGE clients. The APIs allow developers
to easily create distributed platform independent data visualization applications. The API consists of two
parts, a client-side API for building VisAGE clients, and a server-side API for building VisAGE servers.
Remote Method Invocation (RMI) is used as the communication mechanism between VisAGE clients
and VisAGE servers. 

The APIs make it possible to determine what data exists (both sources and individual data points) and
then to issue requests for blocks of data. Visualizations are associated with particular data sources; when
a client receives the data, it can display it using different visualizations. It is also possible to define a
database as a data source, even though it is not time-based. The client-side interfaces can also be used
without a VisAGE server, such as for generic visualization components. Visualization components use
the Model/View/Controller paradigm, so VisAGE enables users to dynamically define different views of
data in real-time. 

This paper discusses a variety of Java and web technologies that were investigated in the development
of VisAGE, namely installation, security, Java2D, Java3D, RMI, Swing, JavaBeans, and XML. Pitfalls
and insights are highlighted. 

Installation and Java Security Issues

2 of 8 2/4/00 2:02 PM

Data Visualization via the Integration of Java Technologies file:///C|/WINDOWS/DESKTOP/WWW8-DataVisualizationUsingJava.html



Delivering a complex Java application to an end user poses several problems. Our installation includes
the VisAGE application, the Java 2 Platform's Java Runtime Environment (JRE) and Java Plug-in
(which allows Java 2 to be executed from a web browser), Java3D and the JavaHelp API. By simply
supplying a JAR file for the user to install and run, we would be assuming that the user understands how
to launch the VM, knows how to specify a classpath, and knows which Java extensions need to be
installed beforehand. However, from a user perspective, what is really desired is to obtain a
self-extracting executable that when launched will completely install all components necessary to run the
application, and perhaps will create a shortcut somewhere on the desktop that will launch the application
via a mouse click. Ideally, the user should be able to visit a web site where he can download the full
installer, or simply get another installer that patches or updates an older version of the application.
Furthermore, Java security details are too complex for many users; therefore, we provided a custom
Security Configuration Tool. The details of our investigation of installation and security issues follow. 

Applets vs. Application 
One of the earliest issues the development team struggled with was the tradeoffs between Java
applets and applications. Java applets (which run in a web browser) are loaded over a network and
are restricted to the Java "sandbox". Applets are prevented from reading and writing files on the
client file system, cannot make network connections except to the originating host, and are not
allowed to accept connections from any host. They are prevented from starting other programs on
the client, are not allowed to load libraries, or to define native method calls. In general, applets
have no access to the client host. However, the restricted functionality of applets can be eliminated
if the applet is digitally signed. Both Netscape and Internet Explorer recognize digital certificates. 

Digital signatures can eliminate the problem of restricted access that limit applets. However, there
are issues with using applets that need to be considered when choosing between Java applets or
Java applications. Applets must be downloaded each time they are used. The larger the applet, the
longer it takes to start. Downloading the applet does take time, but it also insures that the client is
always using the latest version of the software. Another potential problem is that web browsers
often lag behind in their support of the latest Java version. JavaSoft has addressed this problem by
creating the Java Plug-in, a Web browser plug-in that supports new Java versions as soon as they
are available. 

Using Java applications presented many of the same issues developers encounter when using
applications written in other languages. Java applications must be installed on the user's computer.
However, once installed, the application is always instantaneously available to the client. Keeping
clients up-to-date with the latest version of the software can also be problematic. When the
application is updated by developers, the end user must be notified that a new version is available,
obtain it, and re-install the software. Therefore, as VisAGE is launched, it automatically checks
whether an update is available from the web site and, if so, optionally downloads the update. For
all of the above reasons, the VisAGE team decided to provide both applet and application
installation options. 

InstallAnywhere vs. InstallShield 
As noted above, ease of deployment and installation was a primary concern. We first chose
InstallAnywhere (ZeroG Software) which generated HTML and CGI scripts to launch or
download the installer from the web for all major platforms. The user simply visits a web site
created by InstallAnywhere and clicks "install" to place the application on his system without
needing to be concerned about prerequisite software such as the Java VM. InstallAnywhere
provides extensive controls for the developer to specify exactly what to deliver, where to place it

3 of 8 2/4/00 2:02 PM

Data Visualization via the Integration of Java Technologies file:///C|/WINDOWS/DESKTOP/WWW8-DataVisualizationUsingJava.html



on the user's system, which versions are needed for different platform, etc. It provides a simple
GUI interface that can either quickly build an installer by using the "wizard" or can expose
complex features when used in advanced mode. Although InstallAnywhere worked wonderfully
when VisAGE was implemented in JDK1.1.x, it failed to cope with JDK1.2 and Java Extensions.
The newer version, InstallAnywhere 2.5, does support JDK1.2, but cannot deliver 1.2 VM. Also,
there was no way to detect and install Java Extensions that were needed by VisAGE, such as
Java3D. 

We also considered InstallShield Java edition, but ultimately decided against it. Although
InstallShield was very similar to InstallAnywhere in capabilities, it assumed that the user already
had a Java VM installed. We reluctantly moved to InstallShield Professional which gave us
tremendous capabilities to inspect installed components and tailor our installer to deliver exactly
what our users needed. InstallShield Pro gave us the ability to launch other installers within the
installation of VisAGE. When the installer for components like a Java VM or Java extension is
run, it registers the components in the Windows system registry. On the other hand, when those
components are installed by simply placing necessary files on the hard disk (the InstallAnywhere
approach), the registration process is bypassed. The registry approach enabled us to install JRE1.2,
Java3D, and even to set up the Java Plug-in to run JDK1.2 applets on the user's system. However,
InstallShield Professional is Windows-specific, a limitation that is often not acceptable for Java
applications. The other drawback was the inherent complexity of the tool needed to build the
installer since is was not specifically designed for packaging Java applications. Also, it required a
developer to learn InstallShield's own scripting language to implement many desired features. We
ultimately deployed a Windows-specific installer and included online instructions for Unix
installation and configuration. 

Security Configuration Tool 
Since the project's inception, there has been considerable interest in having VisAGE run as both an
application and an applet. Unfortunately, VisAGE requires functionality that is restricted or
prohibited by the Java virtual machine when running in an applet environment. The team
investigated three separate but incompatible implementations of the Java security model: the
Netscape Communicator implementation, the Microsoft Internet Explorer implementation, and the
Sun implementation. The Netscape and Microsoft implementations were based on the earlier JDK
1.1 security framework, whereas the Sun implementation we investigated was a complete security
model included in JDK 1.2. Since Sun's solution works with any browser if used in conjunction
with the Java Plug-in, it became our choice for a security model. However, the Sun
implementation requires the user to know about the applet's security certificate as well as what
privileges the applet needs before the applet can be executed. The VisAGE developers felt that the
tools provided by Sun to setup security were too complicated for our target user base. The solution
was to provide a custom security configuration tool that is downloaded as part of the VisAGE
download. The custom tool automatically establishes the security access needed by the VisAGE
applet. 

RMI for Inter-Process Communication

Java's Remote Method Invocation (RMI) was chosen as the mechanism for inter-process communication
between clients and servers. Two other solutions considered were to use sockets directly with a custom
protocol, or to use an implementation of the Common Object Request Broker (CORBA). 

The Java language has built-in support for sockets. The chief advantage to using sockets, rather than a

4 of 8 2/4/00 2:02 PM

Data Visualization via the Integration of Java Technologies file:///C|/WINDOWS/DESKTOP/WWW8-DataVisualizationUsingJava.html



higher level mechanism like RMI or CORBA, is performance. However, if sockets were used a custom
protocol would need to be produced and a parser for that protocol would have to be written. Therefore, a
socket only implementation would probably be expensive to develop. CORBA is the Object
Management Group's answer to inter-process communication. It is much more flexible than RMI
because it allows for interoperability among applications written in different languages. The two biggest
drawbacks in using CORBA are complexity and cost; the latter was the chief reason for not choosing
CORBA for our project at this time. We also note that some ORB implementations do not perform
exactly as advertised. 

RMI, unlike CORBA, is very easy to use since all objects are Java objects; remote method invocations
look just like local method invocations. As of JDK1.1, RMI is part of core Java and is therefore free.
RMI is ordinarily only considered when the server and client are both written in Java. However, a new
standard extension to Java, RMI over IIOP (RMI/IIOP), makes RMI Interfaces CORBA compatible.
Finally, RMI performance is similar to that of CORBA. 

Java2D vs. AWT

Initially in VisAGE 1.0, 2D visualizations such as bar charts, strip charts, and pie charts were
implemented using a COTS product call JChart, developed by the KLGroup. We found that JChart
enabled us to quickly generate displays for our visualizations because it supplied a framework of
customizable GUI JavaBean components designed specifically for viewing numeric data arrays.
However, we found that the functionality was not extensible. Each chart had a fixed, uniform behavior;
it was not possible to augment the existing functionality with new behavior. 

In Visage2.0, nearly half the visualizations were implemented by using Java2D to develop custom
charts. Java2D greatly enhanced the graphics capabilities of standard Java since it implements many
advanced graphical features that are not found in AWT (Java's basic Abstract Window Toolkit).
However, Java2D does not preclude the use of AWT; it simply gives developers control in adjust
rendering qualities such as interpolation, anti-aliasing, composition, and affine transformations. It also
provides an extensive framework including geometry management, image processing, text rendering,
and printing. 

One disadvantage of using Java2D is its availability. It can only be used on the Java 2 Platform and
cannot be integrated with earlier versions of the Java VM. At this time, this restricts VisAGE to
Windows 95/98/NT and Solaris. Another minor problem with Java2D is its performance versus the
performance of AWT. The performance degradation is mainly due to a slower drawImage method
implemented by Java2D. The degradation is not noticeable by the VisAGE user at all; it is only
significant when displaying very large images. (It is worth noting that Java2D at best does not perform
any faster than AWT when it comes to very low level rendering.) The greatest benefit of Java2D derives
from its use of a floating point coordinate system. Pixel rounding errors in VisAGE 1.0 were eliminated
because Java2D handled the interpolation. 

3D Content: Java3D vs. VRML2/EAI

VisAGE 1.0 used the Virtual Reality Modeling Language version 2 (VRML2) to create dynamic 3D
visualizations. At that time, VRML2 was the most viable solution for adding 3D content to a Java
applet. During the requirements phase of VisAGE 2.0, however, an early access version of Java3D
became available. Upon evaluating Java3D it was decided that it was a better solution for 3D graphical

5 of 8 2/4/00 2:02 PM

Data Visualization via the Integration of Java Technologies file:///C|/WINDOWS/DESKTOP/WWW8-DataVisualizationUsingJava.html



applets and applications. 

With VRML2, the applet communicated with the CosmoPlayer browser plug-in via the External
Authoring Interface (EAI). This interface defines a set of methods that an external entity can perform on
the VRML browser to affect the VRML scene. For simple interactions, this mechanism is very useful.
However, for more complex operations, EAI proved to be cumbersome and added an unnecessary level
of abstraction. Java3D, on the other hand, is written in Java, enabling 3D content to be written directly in
Java code. Therefore, Java3D removes the unreliability of communicating through EAI. VRML2 was
designed for content creators and thus simplicity was a key goal, at the expense of limiting functionality.
For example, in VRML2 fine grain control over all aspects of the 3D scene is not possible. Java3D was
created with the software developer in mind. The API provides a rich set of features for creating and
manipulating a 3D scene. This makes Java3D much more preferable than VRML/EAI if complex
interaction is needed. 

VRML plug-ins like CosmoPlayer must run within a web browser. However, one of the objectives of
VisAGE was to create 3D visualizations components that can be used like any other Java component,
specifically within a Java Panel or Frame. This goal could not be met using VRML2/EAI but could with
Java3D. In fact, all of the VisAGE 2.0 visualizations are now reusable JavaBeans. 

Java3D is a standard extension to Java that gives developers the ability to write applets and applications
that use 3D graphics. Most of our development team had prior experience with the Silicon Graphics
OpenInventor toolkit. Thus, the transition to Java3D was fairly easy. Java3D eliminated the
shortcomings of the VRML/EAI solution. 

Swing vs. AWT

Swing is Java's new lightweight GUI toolkit; it is not based on OS-specific rendering of GUI
components, as is its predecessor, AWT. Therefore, Swing is not limited to providing a "least common
denominator" set of components across platforms (as is AWT). A more sophisticated set of components
is supported by Swing. Despite its bugs, Swing's expanded GUI toolkit provided VisAGE with a better
look and feel than what was possible using AWT. In particular, the addition of the Swing Tree, Table,
and Tabbed Pane added significantly to the usability of the UI. 

Unfortunately, the flexibility and extensibility of Swing are at the expense of speed. AWT components
out-perform Swing components because in the case of AWT, the OS handles the rendering directly.
Swing can't rely on native methods, so it must handle the widgets programmatically in Java. Although
75% of the GUI was created using Swing widgets, the overall performance of the GUI was judged
acceptable. 

A major problem was in the interaction of the lightweight Swing components with the heavyweight
AWT components; Swing components cannot cover AWT components. For example, when Swing
pulldown menus where dropped down over an AWT panel, the menu was clipped by the panel, making
it impossible to select menu choices. The solution was to call 

JPopupMenu.setDefaultLightWeightPopupEnabled(false); 

prior to menu creation. 

6 of 8 2/4/00 2:02 PM

Data Visualization via the Integration of Java Technologies file:///C|/WINDOWS/DESKTOP/WWW8-DataVisualizationUsingJava.html



JavaBeans - Reusable Software Components

JavaBeans is the component architecture used by Java. JavaSoft defines a Java Bean as a reusable
software component that can be manipulated visually in a builder tool, but they are actually much more
than that. JavaBeans are characterized by introspection, customization, events, properties, and
persistence. Introspection is the runtime analysis of what a Bean can do. Persistence means that the state
of a Bean can be saved and reconstituted later. Customization means that the Bean's properties can be
modified at runtime. Properties are attributes that enable developers to customize beans to a large
degree. 

All of the visualizations in VisAGE are JavaBeans (although JavaBeans need not be visual). This
implementation decision was extremely advantageous. Our components have been remarkably reusable
and have made integration with other systems easier than expected. 

XML for Data Sources

Previous versions of VisAGE required that descriptions of the data sources were hardcoded in the server.
Whenever a data source changed, server code had to be modified and VisAGE needed to be recompiled.
This inefficiency was addressed in the latest version by using an XML file to describe the data sources.
Use of an XML Source Description file reduces (or eliminates) the need for an end user to write any
code when properties of one of their data sources change or when a new source is added. Instead, editing
the Source Description file is all that is required. It is a plus that the XML format looks very familiar to
anyone who has written HTML. 

We chose to use Sun's XML library called Java Project X since it was a pure Java solution that provided
a fast, robust set of features for only a modest increase in VisAGE's size. Java Project X provides core
XML capabilities including a fast XML parser with optional validation and an in-memory object model
tree that supports the W3C Document Object Model (DOM) Level 1 recommendation. 

Summary and Conclusions

This paper discussed a number of Java technologies that were effectively used to develop state-of-the-art
data visualizations. Other Java technologies including JavaHelp, Sound, and tools such as JBuilder were
used, but space does not permit their discussion. 

NASA is currently considering using VisAGE to incorporate advanced visualization capabilities into
ongoing and future missions. Several prototype efforts are underway, such as developing a web-based
front-end to the Microwave Anistropy Probe (MAP) ground system. (MAP is a Mid-Class Explorer
(MIDEX) class mission designed to probe conditions in the early universe by measuring temperature
differences in the cosmic microwave background radiation.) 

The Java platform (especially Java 2) provided the VisAGE team all the tools needed to develop a
powerful, platform-independent, web-based visualization system. While working with cutting edge
technology certainly presents significant challenges, in the end it was worth the effort. Although some of
the advanced Java APIs and standard extensions are relatively new at the time of this writing, they were
stable enough, on the whole, for us to complete the VisAGE 2.0 release. The development team is
looking forward to applying emerging technologies such as the Java Advanced Imaging, Media
Framework, Sound, Speech, Shared Data and Telephony APIs in future efforts. 

7 of 8 2/4/00 2:02 PM

Data Visualization via the Integration of Java Technologies file:///C|/WINDOWS/DESKTOP/WWW8-DataVisualizationUsingJava.html



References

Project Links

Virtual Environment Testbed (VET) Home Page 
VisAGE Home Page 
VisAGE Screenshot (large) 
Information Visualization 
Microwave Anistropy Probe (MAP) 

Technology Links

JavaSoft Products and APIs 
JDK 1.2 (Java2 platform) 
Explore Java2 features (overview) 
Java Plug-in (part of Java2 platform) 
Java Security 
JavaBeans 
RMI 
Java2D (2D demo) 
Java3D 
Java Media APIs (Advanced Imaging, Media Framework, Sound, Speech, Shared Data,
Telephony, etc.) 
Swing 
JavaHelp 
XML: Sun's Java Project X (requires free login) 
InstallShield (InstallShield Software Corporation) 
InstallAnywhere (ZeroG Software) 
JClass (KLGroup) 

8 of 8 2/4/00 2:02 PM

Data Visualization via the Integration of Java Technologies file:///C|/WINDOWS/DESKTOP/WWW8-DataVisualizationUsingJava.html


